一个车牌识别系统是否实用,最重要的指标是识别率。国际交通技术作过专门的识别率指标论述,要求是24小时全天候全牌正确识别率85%~95%。为了测试一个车牌识别系统识别率,需要将该系统安装在一个实际应用环境中,全天候运行24小时以上,采集至少1000辆自然车流通行时的车牌照进行识别,并且需要将车辆牌照图像和识别结果存储下来,以便调取查看。然后,还需要得到实际通过的车辆图像以及正确的人工识别结果。之后便可以统计出以下识别率:1、自然交通流量的识别率=全牌正确识别总数/实际通过的车辆总数.2、可识别车牌照的百分率=人工正确读取的车牌照总数/实际通过的车辆总数3、可识别全牌正确识别率=全牌正确识别的车牌照总数/人工读取的车牌照总数这三个指标决定了车牌识别系统的识别率,诸如可信度、误识率等都是车牌识别过程中的中间结果。
在众多车辆中,总不会缺少“黑名单”车辆,例如:被通缉或挂失的车辆、欠交费车辆、未年检车辆、闯祸逃逸及违章车辆等,一个一个去查太麻烦了,有什么设备可以自动监测呢?车牌识别系统便能如此。只要将违规车辆的号码牌输入到后台系统中,一旦这种非法车辆出来活动,在车牌识别系统监测的路口监测到之后,后台系统便会发出警报,正确率高达99%。车牌识别系统的功能远远不止于此,真地智能车牌识别系统更是在无限的可能中继续探索,不断追求更大的发展。
北京市交通委24日发布系列措施,提高道路车牌识别收费系统识别准确率。对车牌识别,优化了车牌颜色识别算法,改进了夜间因反光造成的识别问题,对遮挡摄像头的树木进行了修剪。对计费误差,通过电子收费系统与前端设备数据交换校验,降低了错误订单量;同时规范人工服务流程,防止出现不完整订单。对“审核时间长”的问题,增加了本地车牌信息自动匹配校验功能,效率显著提升。目前,本地车牌审核只需几小时,一次性审核通过率达90%以上。对停车费“过高”的问题,明确停车费执行标准是2011年4月1日由北京市发展改革委制定的,没有调整
智能车牌识别系统是一种以高效,公正准确,科学经济的停车场管理工具,实现停车场对于车辆静态与动态的综合管理。如今,智能车牌识别系统为了提高了人们对停车场系统的掌控要求,使人们停车简单而变得更加多样化。智能车牌识别系统可以有效地解决人工收费中容易发生的争执、费用流失、车辆被盗、服务效率低、管理形象差等问题,也能让车友更快停车、取车,去一个地方还能通过一些平台预先定停车位,缴费也安全、便捷。系统通过感应卡为载体,通过感应卡记录车辆的进出信息,利用计算机的管理手段,由此来确定停车场的计费金额,结合工业自动化控制的技术控制机电一体化外围设备,由此来管理进出停车场的各种车辆,随着科技的不断更新,受到广大车友们的喜爱。
(1)人脸检测:面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:海口车牌识别一体机车牌识别系统①参考模板法:首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸;②人脸规则法:车牌识别一体机车牌识别系统价格由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸;③样品学习法:这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器;④肤色模型法:这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。⑤特征子脸法:这种方法是将所有面像集合视为一个面像子空间,并基于检测样品与其在子孔间的投影之间的距离判断是否存在面像。值得提出的是,上述5种方法在实际检测系统中也可综合采用。(2)人脸跟踪:面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。此外,利用肤色模型跟踪也不失为一种简单而有效的手段。(3)人脸比对:面貌比对是对被检测到的面貌像进行身份确认或在面像库中进行目标搜索。这实际上就是说,将采样到的面像与库存的面像依次进行比对,并找出最佳的匹配对象。所以,面像的描述决定了面像识别的具体方法与性能。目前主要采用特征向量与面纹模板两种描述方法:
1) 牌照定位,定位图片中的牌照位置2) 牌照字符分割,把牌照中的字符分割出来;3) 牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。车牌识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。1) 牌照定位:自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个较好的区域作为牌照区域,并将其从图像中分离出来。2) 牌照字符分割:完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。3) 牌照字符:识别方法主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符二值化并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择好的匹配作为结果。基于人工神经网络的算法有两种:一种是先对字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把图像输入网络,由网络自动实现特征提取直至识别出结果。